Convective and non-convective mixing in AGB stars

Falk Herwig and Bernd Freytag

Los Alamos National Laboratory
Theoretical Astrophysics Group

Variation of mixing length parameter:

Calculated from a grid of RHD convective envelope models for sun-like stars

3D hydro simulations of AGB convective envelopes

Simulations by Bernd Freytag (left) and Paul Woodward and David Porter (right)

Vorticity:

http://www.astro.uu.se/~bf

Temperature fluctuations:

Porter & Woodward 2000, ApJS 127, 159

http://www.lcse.umn.edu/research/RedGiant

Multi-dimensional hydrodynamics simulations of He-shell flash convection

Goals:

- Topology of He-shell flash convection how does it look like?
- Velocity distribution for short-lived T-dependent s-process branchings (e.g. ¹²⁸I, Reifarth etal. 2004, ApJ)
- Entrainment (mixing across convective boundaries): there is a continuous range from classical overshooting to gravity wave turbulent mixing
- Next step: H-ingestion into He-shell flash (metal poor AGB stars, post-AGB bornagain stars)

Collaborators: Bernd Freytag, Robert Hueckstaedt, Frank Timmes Herwig et al 2006, ApJ 642, 1057, Freytag et al. 2006, in prep.

Setup, code, initial conditions

- ·2D and 3D hydrodynamics simulations of a short duration (~20ksec) of He-shell flash convection at a time just before the peak of He-flash
- •Explicit, Eulerian, compressible grid code RAGE
- •Initial conditions: piecewise polytropic stratification with gravity that closely resembles the actual conditions in a specific $2M_{\odot}$, Z=0.01 thermal pulse model

Flow pattern

lc0gh: time=4300 s $v_{\Delta rms,max}$ =16.2 km/s

Pressure fluctuations with pseudo-streamlines overplotted, 2D, 1200×400 , enhanced heating (30x) (lcOgh)

High-resolution run

2D entropy fluctuations (2400x800), realistic heating rate Courant time scale at this resolution: ~3*10-3sec -> 1.6M cycles

Movie 2D

Insert here movie lcOgh_ds.mpg.

Entropy fluctuations, 2D, 1200x400, realistic heating (lcOgh)

3-dimensional simulation: 300²x200, enhanced heating (lc4dg) Horizontal slices of entropy fluctuations

3-dimensional simulation: $300^2 \times 200$, enhanced heating (lc4dg) Horizontal slices of vertical velocity

3-dimensional simulation: $300^2 \times 200$, enhanced heating (lc4dg) Horizontal slices of vertical velocity

Oscillation analysis

k-ω diagrams for various heights of benchmark run lcOgg

Oscillation analysis

k-ω diagrams for various heights of benchmark run lcOgg

Mixing of He-shell Flash Convection

Diffusion coefficient reflecting hydrodynamic mixing (Freytag & Herwig, 2006, in prep).

$$f_{top} \sim 0.10$$

 $f_{bot,1} \sim 0.01$
 $f_{bot,2} \sim 0.14$

s-process in rotating AGB Stars

Neutron exposure in s-process production site:

Herwig etal (2003), Siess etal. (2004)

Mixing for the ¹³C pocket

Mixing processes for the radiative sprocess (partial mixing of protons with ¹²C at the base of the convective envelope during/after 3DUP)

Intershell C abundance vs. max neutron exposure in subsequent ¹³C-pocket

Larger ¹²C intershell abundance results in larger ¹³C abundance in pocket, and thus larger max. neutron exposure.

Lugaro et al. 2003

Conclusions

- Full hydrodynamic simulations of convection in AGB stars, both in the envelope and in the intershell are now becoming feasible, and offer a new exciting tool to study mixing.
- Our simulations of He-shell flash convection allow a first quantitative glimpse at mixing at and across the convective boudary.
- The simulations emphasise the need to study the role of gravity waves in much greater detail.
- Rotating models do currently not reproduce observables.

After this slide: discussion slides.

Comparison with MLT

Comparison of rmsvertical velocities from hydro simulation lcOgg and the mixinglength theory velocities from the 1Dstellar evolution model.

Velocities from internal gravity waves

Convergence

The grid

Resolution →

			е	f	g	h	I
			210x70	300x100	600x200	1200x400	2400x800
↑ Energy driving	С	100			10000		
	d	30	10000	10000	10000	4600	900
	е	10			10000		
	f	3			10000		
	g	1	10000	15000	16500	4300	
	h	1./3.		10000	16500		
	Ι	1./10.		10000	20000		

Energy-driving sequence

Resolution sequence

Energy driving x30